বিপরীত ফাংশনের ডোমেইম এবং রেঞ্জ

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত - উচ্চতর গণিত – ১ম পত্র | | NCTB BOOK
1

বিপরীত ফাংশনের ডোমেন এবং রেঞ্জ মূল ফাংশনের ডোমেন ও রেঞ্জের বিপরীত হয়। অর্থাৎ, মূল ফাংশনের রেঞ্জ বিপরীত ফাংশনের ডোমেন এবং মূল ফাংশনের ডোমেন বিপরীত ফাংশনের রেঞ্জ হয়ে যায়।


ডোমেন এবং রেঞ্জের সম্পর্ক

১. বিপরীত ফাংশনের ডোমেন: মূল ফাংশনের রেঞ্জ যা আউটপুট হিসেবে পাওয়া যায়, সেটিই বিপরীত ফাংশনের ডোমেন হবে।

২. বিপরীত ফাংশনের রেঞ্জ: মূল ফাংশনের ডোমেন যা ইনপুট হিসেবে ব্যবহৃত হয়, সেটিই বিপরীত ফাংশনের রেঞ্জ হবে।


উদাহরণ

ধরা যাক, \( f(x) = 2x + 3 \) একটি ফাংশন, যার ডোমেন এবং রেঞ্জ হলো সব বাস্তব সংখ্যা (Real Numbers)।

এর বিপরীত ফাংশন হলো \( f^{-1}(x) = \frac{x - 3}{2} \)।

এই ক্ষেত্রে:

  • মূল ফাংশন \( f(x) \)-এর ডোমেন সব বাস্তব সংখ্যা \( \mathbb{R} \), যা বিপরীত ফাংশন \( f^{-1}(x) \)-এর রেঞ্জ হবে।
  • মূল ফাংশন \( f(x) \)-এর রেঞ্জ সব বাস্তব সংখ্যা \( \mathbb{R} \), যা বিপরীত ফাংশন \( f^{-1}(x) \)-এর ডোমেন হবে।

সংক্ষেপে:

  • মূল ফাংশনের ডোমেনবিপরীত ফাংশনের রেঞ্জ
  • মূল ফাংশনের রেঞ্জবিপরীত ফাংশনের ডোমেন

এই নিয়মটি মূল ফাংশন ও বিপরীত ফাংশনের মধ্যে একটি গুরুত্বপূর্ণ সম্পর্ক তৈরি করে।

Promotion